
Windows Driver DLL

Overview
Mantracourt supply a standard Windows driver DLL which can be used by many development tools.
This DLL has been created to simplify communications with the T24 range of telemetry devices.
This handles circular buffers for incoming data and provides signaling to the host application of
incoming packets via a callback mechanism.
The DLL can be used with a single serial port or a USB bus.
Where strings are used these are in a format that can be used by Visual Basic. If used in Delphi or C
Builder these functions need to be declared as StdCall.
Below you will find the API declarations for Visual Basic which may be used as a guide for other
languages:

Public Declare Function VERSION Lib "T24Drv.dll" () As Single

Public Declare Sub INITIALISE Lib "T24Drv.dll" (ByRef iCallbackAddress As Long)

Public Declare Function OPENPORT Lib "T24Drv.dll" (ByVal ComPort As Integer, ByVal Baudrate

As Long) As Integer

Public Declare Function CLOSEPORT Lib "T24Drv.dll" () As Integer

Public Declare Function OPENUSB Lib "T24Drv.dll" () As Integer

Public Declare Sub ENUMUSB Lib "T24Drv.dll" ()

Public Declare Function BIND Lib "T24Drv.dll" (ByVal BaseStation As Byte, ByVal

UseRemoteSettings As Byte, ByVal ConfigMode As Byte, ByVal Duration As Byte, ByRef ID As

Long, ByRef DataTag As Long) As Integer

Public Declare Function BINDASYNC(ByVal BaseStation As Byte, ByVal UseRemoteSettings As

Byte, ByVal ConfigMode As Byte, ByVal Duration As Byte) As Integer

Public Declare Function BINDASYNCPOLL(ByRef ID As Long, ByRef DataTag As Long) AS Integer

Public Declare Function READREMOTE Lib "T24Drv.dll" (ByVal BaseStation As Byte, ByVal ID As

Long, ByVal Command As Byte, ByRef sData As Byte, ByRef Length As Long, ByRef RSSI As

Integer, ByRef CV As Integer, ByRef flags As Integer) As Integer

Public Declare Function WRITEREMOTE Lib "T24Drv.dll" (ByVal BaseStation As Byte, ByVal ID

As Long, ByVal Command As Byte, ByRef sData As Byte, ByVal Length As Long, ByRef RSSI As

Integer, ByRef CV As Integer, ByRef flags As Integer) As Integer

Declare Function WRITEPACKET Lib "T24Drv.dll" (ByVal BaseStation As Byte, ByRef sData As

Byte, ByVal Length As Long) As Integer

Functions and Subs

INITIALISE
Initialise the DLL and setup the callback address so that when packets arrive the hosting application
receives a callback.

SUB INITIALISE(BYREF iCallbackAddress AS LONG)

Where:

Parameter Description

iCallbackAddress long pointer to the address of the callback procedure.

Required before OPENUSB or OPENPORT is called. Pass the address of the callback function. The
format of the function (In Visual Basic) is

Sub CallBack(ByRef StringPtr As Long, Length As Long)

To extract the packet data the following Visual Basic example may prove useful:

Sub CallBack(ByRef StringPtr As Long, Length As Long)

 Dim PacketString As String

 Dim PacketByteArray(128) As Byte

 'To get the packet into a byte array

 CopyMemory PacketByteArray(0), ByVal StringPtr, Length

 'To get the packet into a string

 PacketString = Left$(StrConv(PacketByteArray(), vbUnicode),

Length)

End Sub

VERSION
Return the driver version.

FUNCTION VERSION() AS SINGLE

Returns:
The version number in floating point format.

OPENPORT
Open a serial port for communications.

FUNCTION OPENPORT(BYVAL ComPort AS INTEGER, BYVAL Baudrate AS LONG) AS

INTEGER

Where:

Parameter Description

ComPort Long variable indicating the COM port to open.

Baudrate Long value representing the actual required baudrate. The PC port will
generate to closest available baudrate to this value.

Returns:

Integer Value Description

0 Port opened OK.

-1 Invalid settings. The serial port exists but could not be configured to the
required settings including the requested baudrate.

-2 Could not open serial port at all. Either the port does not exist or another
application has opened this port.

This function must be called before transmitting any packets and once called will activate the
callbacks as packets are received by the base station.

OPENUSB
Opens communications with the USB bus. This function does not rely on a base station being
present to be a success.

FUNCTION OPENUSB() AS INTEGER

Returns:

Integer Value Description

0 USB bus opened OK.

-2 Could not initialize the USB bus.

This function must be called before transmitting any packets and once called will activate the
callbacks as packets are received by the base station.

ENUMUSB
This sub can be called every few seconds to allow changes on the USB bus to be enumerated. Most
of the time this will change nothing but if a device has been plugged or unplugged from the bus
calling this will enumerate the remaining devices and gracefully cope with additions or removals of
the base stations. As this can take up to 250mS to complete (When a change has been detected) it
is recommended that this be called only every few seconds.

SUB ENUMUSB()

This should only be called after OPENUSB has been successful. If a base station is present when
OPENUSB is called and it is going to stay connected then there is no need to call this method.

CLOSEPORT
Close any open serial ports or USB bus connection.

FUNCTION CLOSEPORT() AS INTEGER

Returns:

Integer Value Description

0 Closed OK.

-2 An error occurred while closing the ports.

This function should be called before closing the hosting application.

BIND
Also known as Pairing. The BIND function allows connection information to be retrieved from an
unknown remote device and to configure the communications settings between that device and the
base station. Most devices activate their binding mechanisms by being power cycled but refer to
the device manual for details.
This function is blocking and does not return until a bind is successful or the duration has expired.
For a non blocking Bind function see BINDASYNC.

FUNCTION BIND(BYVAL BaseStation AS BYTE, BYVAL UseRemoteSettings AS BYTE,

BYVAL ConfigMode AS BYTE, BYVAL Duration AS BYTE, BYREF ID AS LONG, BYREF

DataTag AS LONG) AS INTEGER

Where:

Parameter Description

BaseStation Represents the base station address. This should be 1.

UseRemoteSettings Determines whether the remote device will be configured to the base
station communications settings or vice versa. Set to 1 to change the base
station settings to match those of the remote device or zero to change the
remote device settings to match the base station.

ConfigMode Determines whether the remote device will enter configuration mode. This
mode is dependent on the actual device but will generally mean it will stop
any automatic transmissions, inhibit low power modes and not act on any
automatic sleep mechanisms. This ensures that the binding application can
communicate and configure it.

Duration Sets the duration of the bind attempt in seconds. i.e. how long the base
station will wait for the remote device to enter bind mode.

ID The ID of the bound device.

DataTag The default Data Tag of the bound device.

Returns:

Integer Value Description

0 Bind was successful.

1 Bind was not successful. No remote device was detected.

99 Thread conflict detected! Yield (sleep, doevents etc) and retry the function.

Once a successful bind has occurred the hosting application may communicate with the device
using READREMOTE and WRITEREMOTE using the ID returned from the bind function.

BINDASYNC
This bind function is non blocking and is useful when you need to control the power supplied to
your device to trigger the bind. This function is called first then use BINDASYNCPOLL to test the
status and outcome of the bind.

FUNCTION BINDASYNC(BYVAL BaseStation As BYTE, BYVAL UseRemoteSettings As

BYTE, BYVAL ConfigMode As BYTE, BYVAL Duration As BYTE) As Integer

Where:

Parameter Description

BaseStation Represents the base station address. This should be 1.

UseRemoteSettings Determines whether the remote device will be configured to the base
station communications settings or vice versa. Set to 1 to change the base
station settings to match those of the remote device or zero to change the
remote device settings to match the base station.

ConfigMode Determines whether the remote device will enter configuration mode. This
mode is dependent on the actual device but will generally mean it will stop
any automatic transmissions, inhibit low power modes and not act on any
automatic sleep mechanisms. This ensures that the binding application can
communicate and configure it.

Duration Sets the duration of the bind attempt in seconds. i.e. how long the base
station will wait for the remote device to enter bind mode.

Returns:

Integer Value Description

0 Bind initiation was successful.

99 Thread conflict detected! Yield (sleep, doevents etc) and retry the function.

Now call BINDASYNCPOLL to determine when the bind has completed or failed.

BINDASYNCPOLL
Called after BINDASYNC to determine whether the bind is busy or has completed.

FUNCTION BINDASYNCPOLL(BYREF ID As LONG, BYREF DataTag As LONG) As INTEGER

Where:

Parameter Description

ID The ID of the bound device.

DataTag The default Data Tag of the bound device.

Returns:

Integer Value Description

0 Bind was successful.

1 Bind was not successful. No remote device was detected.

99 Busy. Binding is still in progress.

If successful the ID and DataTag parameters will contain the ID and Data Tag of the bound device.

READREMOTE
Reads a parameter from a remote device. The radio modules transparently handle retries. This
function is blocking and execution will not continue until a response has been received or the
function has timed out.

FUNCTION READREMOTE(BYVAL BaseStation AS BYTE, BYVAL ID AS LONG, BYVAL

Command AS BYTE, BYREF sData AS BYTE, BYREF Length AS LONG, BYREF RSSI AS

INTEGER, BYREF CV AS INTEGER, BYREF Flags AS INTEGER) AS INTEGER

Where:

Parameter Description

BaseStation The address of the base station through which to route this packet.

ID The ID of the remote device.

Command The command number of the parameter to read.

sData Pointer to the result data. There must be enough bytes allocated to avoid
buffer overflows. Recommend 128 bytes. The first byte indicates the data
type. This will be set by the device and you cannot request data of a
specific type. See Data Types and Formats later.

Length The number of bytes returned.

RSSI The radio signal level in dB of the received packet. This parameter will be
set on return from this function.

CV The correlation value of the received packet. A value of 55 is a poorly
formed signal whereas 110 is a perfectly formed signal. This parameter will
be set on return from this function.

Flags Contains extra information regarding this packet. The binary value of the
flags indicate the following:
1=This packet was broadcast.
2=Remote device reports low battery.
4=Remote device reports an error.
This parameter will be set on return from this function.

Returns:

Integer Value Description

0 Received response OK

1 No response from base station.

2 No response from remote device.

3 NAK response from remote device.

99 Thread conflict detected! Yield (sleep, doevents etc) and retry the function.

WRITEREMOTE
Writes a parameter to a remote device. This function is blocking and execution will not continue
until a response has been received or the function has timed out.

FUNCTION WRITEREMOTE(BYVAL BaseStation AS BYTE, BYVAL ID AS LONG, BYVAL

Command AS BYTE, BYREF sData AS BYTE, BYVAL Length AS LONG, BYREF RSSI AS

INTEGER, BYREF CV AS INTEGER, BYREF Flags AS INTEGER) AS INTEGER

Where:

Parameter Description

BaseStation The address of the base station through which to route this packet.

ID The ID of the remote device.

Command The command number of the parameter to read.

sData Pointer to the data to write. The first byte indicates the data type. See
Data Types and Formats later. You can write any data type to any
parameter and if possible the data will be converted when written. For
example you could use strings to write all data if desired.

Length The number of bytes returned.

RSSI The radio signal level in dB of the received packet. This parameter will be
set on return from this function.

CV The correlation value of the received packet. A value of 55 is a poorly
formed signal whereas 110 is a perfectly formed signal. This parameter will
be set on return from this function.

Flags Contains extra information regarding this packet. The binary value of the
flags indicate the following:
1=This packet was broadcast.
2=Remote device reports low battery.
4=Remote device reports an error.
This parameter will be set on return from this function.

WRITEPACKET
Transmit a custom T24 packet.
WARNING: Be very careful with this command as this command has the capability to write data to
modules or alter their operational state.
This can be used to generally provide data provider packets or can be used to send basic commands
via the Data Provider Control Interface. To send a Data Provider Packet the data pointed to by
pData would contain the packet type byte and all data.

WORD WRITEPACKET(BYTE bBaseStation, BYTE *pData, DWORD dwLength)

Where:

Parameter Description

bBaseStation The address of the base station through which to route this packet.

pData Pointer to the data to transmit. (The first byte must indicate the data type)

dwLength The number of bytes to transmit.

Returns:

Integer Value Description

0 Received response OK

1 No response from base station.

2 No response from remote device.

3 NAK response from remote device.

4 Invalid Data response from remote device.

99 Thread conflict detected! Yield (sleep, doevents etc) and retry the function.

Example
To send a Data Provider packet that looks to be from Data Tag 0x1234 and contains a floating point
number of 1.234
The structure of a Data Provider Packet is

Packet
Type

Data
Tag

Status Data
Type

Data

03 00 00 00 00 […]

So we can emulate this with this command by sending

Packet
Type

Data
Tag

Status Data
Type

Data Data Data Data

03 12 34 00 04 3F 9D F3 B6

As Data Type of 4 means a float and the value of 1.234 = 3F9DF3B6
You would point pData to the above bytes and set the length to 9.

Using the Data Provider Interface
When acquisition devices are operating in low power mode it is not easy to communicate using the
full read/write packets as most of the time the device is asleep. Also in some cases the consumer
of the data only knows the Data Tag from the Data Provider packet and does not know the ID of the
sender. Therefore we need to utilise a control interface within the Data Provider packet scheme
whereby devices such as a handheld can perform rudimentary control on another device while
knowing no more than that devices default Data Tag.
Each device supplying data to a consumer only has one defined default Data Tag. We reuse that tag
to enable communicating back to the data provider. This will not affect other consumers of the
data as the data provider packet will contain a data type of FF which indicates our internal control
interface.
All other consumers will automatically reject the FF data type anyway.
So to control the provider we simply send a data provider packet using the same data tag but
containing data of type FF the data consists of a single Function Byte which has fixed functionality
depending on its value. The status byte is not used and may be left at zero.
To use this interface the sender must reply with the control interface packet within 8 milliseconds
of receiving a Data Provider packet. The format of the transmitted packet would be as follows.

Packet
Type

Data
Tag

Status Data
Type

Function
Byte

03 00 00 00 FF 00

The Function Byte can have the following values. Note that not all modules may support all
commands.

Value Function

0 None

1 SLEEP

2 PAUSE

3 STAYAWAKE

4 CONTINUE

5 DOSYSTEMZERO

6 REMOVESYSTEMZERO

7 SHUNTCALON

8 SHUNTCALOFF

9 DOTARE

A REMOVETARE

B LEDONUNTILNEXTTX

Using a Data Tag of FFFF will act as a broadcast data provider control interface and all recipients of
an FFFF data tag will check the data type and if this is FF the device may perform the specified
function.
So to pause a module sending Data Provider packets with a Data Tag of 0x1234 you would need to
send the following data within 8mS of receiving the Data Provider Packet.

Packet
Type

Data
Tag

Status Data
Type

Function
Byte

03 12 34 00 FF 02

To send this packet use WRITEPACKET where pData would point to the above bytes and the
dwLength would be 6.

Data Types and Formats
The first byte in the data written to and read from devices indicates the data type and thus the
format of the data that follows.

Value Data Type

0 Unknown data type. Can be used when executing commands.

1 UINT8

2 UINT16

3 INT32

4 FLOAT

5 STRING

5 BINARY

See Appendix A – Data Type Formats in the T24 Technical Manual for details on the formatting.

Thread Conflicts
The DLL has been designed to allow the host IDE to debug through the callback routines. To achieve
this there is a situation where sometimes calls to the functions will not able to be handled correctly
(i.e. a callback to the host IDE is in progress and to continue would violate the integrity of the
threading). In this case the returned value will be 99 and the host program needs to yield
processing if it to succeed in getting a response.
The suggested technique is as follows:

 Variable = 99

 While Variable = 99

 Variable = DLLFUNCTION()

 If Variable = 99 Then Yield

 Wend

Where DLLFUNCTION() is where you would place the ReadRemote or WriteRemote call. You will

need to find the appropriate command in your language to Yield. In Visual Basic this is DoEvents

and in Delphi this is Application.ProcessMessage.

Notes
You should only use data from a function if it has returned a zero (0). All other responses indicate
an error.

DLL Limitations
� When connecting via USB only one base station is supported and this must be address 1 (set by

DIP switches on industrial version).
� This DLL can only open one serial port per host thread.

